A股上市公司传智教育(股票代码 003032)旗下技术交流社区北京昌平校区

 找回密码
 加入黑马

QQ登录

只需一步,快速开始




数据挖掘的发展历史

1989年8月召开的第11届国际人工智能联合会议的专题讨论会上首次出现了知识发现(KDD)这个术语。


而数据挖掘(Data Mining)则是知识发现(KDD)的核心部分,它指的是从数据集合中自动抽取隐藏在数据中的那些有用信息的非平凡过程。

这些信息的表现形式为:规则、概念、规律及模式等。


数据挖掘融合了数据库、人工智能、机器学习、统计学、高性能计算、模式识别、神经网络、数据可视化、信息检索和空间数据分析等多个领域的理论和技术


统计分析与数据挖掘的主要区别相对于传统的统计分析技术,数据挖掘的特点
  • 数据挖掘特别擅长于处理大数据,尤其是几十万行、几百万行,甚至更多更大的数据。
  • 数据挖掘在实践应用中一般都会借助数据挖掘工具,而这些挖掘工具的使用,很多时候并不需要特别专业的统计背景作为必要条件。不过,需要强调的是基本的统计知识和技能是必需的。
  • 在信息化时代,数据分析应用的趋势是从大型数据库中抓取数据,并通过专业软件进行分析,所以数据挖掘工具的应用更加符合企业实践和实战的需要。
  • 从操作者来看,数据挖掘技术更多是企业的数据分析师、业务分析师在使用,而不是统计学家用于检测。

数据挖掘与统计分析比较明显的差异
  • 统计分析的基础之一就是概率论,在对数据进行统计分析时,分析人员常常需要对数据分布和变量间的关系做假设,确定用什么概率函数来描述变量间的关系,以及如何检验参数的统计显著性;但是,在数据挖掘的应用中,分析人员不需要对数据分布做任何假设,数据挖掘中的算法会自动寻找变量间的关系。因此,相对于海量、杂乱的数据,数据挖掘技术有明显的应用优势。
  • 统计分析在预测中的应用常表现为一个或一组函数关系式,而数据挖掘在预测应用中的重点在于预测的结果,很多时候并不会从结果中产生明确的函数关系式,有时候甚至不知道到底是哪些变量在起作用,又是如何起作用的。最典型的例子就是“神经网络”挖掘技术,它里面的隐蔽层就是一个“黑箱”,没有人能在所有的情况下读懂里面的非线性函数是如何对自变量进行组合的。
  • 在实践应用中,统计分析常需要分析人员先做假设或判断,然后利用数据分析技术来验证该假设是否成立。但是,在数据挖掘中,分析人员并不需要对数据的内在关系做任何假设或判断,而是会让挖掘工具中的算法自动去寻找数据中隐藏的关系或规律。两者的思维方式并不相同,这给数据挖掘带来了更灵活、更宽广的思路和舞台

数据挖掘主要成熟技术以及在数据化运营中的主要应用决策树

决策树算法之所以在数据分析挖掘应用中如此流行,主要原因在于决策树的构造不需要任何领域的知识,很适合探索式的知识发掘,并且可以处理高维度的数据。在众多的数据挖掘、统计分析算法中,决策树最大的优点在于它所产生的一系列从树根到树枝(或树叶)的规则,可以很容易地被分析师和业务人员理解,而且这些典型的规则甚至不用整理(或稍加整理),就是现成的可以应用的业务优化策略和业务优化路径。另外,决策树技术对数据的分布甚至缺失非常宽容,不容易受到极值的影响。


神经网络

简单来讲,“神经网络”就是通过输入多个非线性模型以及不同模型之间的加权互联(加权的过程在隐蔽层完成),最终得到一个输出模型。其中,隐蔽层所包含的就是非线性函数。


由于“神经网络”拥有特有的大规模并行结构和信息的并行处理等特点,因此它具有良好的自适应性、自组织性和高容错性,并且具有较强的学习、记忆和识别功能。目前神经网络已经在信号处理、模式识别、专家系统、预测系统等众多领域中得到广泛的应用。


“神经网络”的主要缺点就是其知识和结果的不可解释性,没有人知道隐蔽层里的非线性函数到底是如何处理自变量的,“神经网络”应用中的产出物在很多时候让人看不清其中的逻辑关系。但是,它的这个缺点并没有影响该技术在数据化运营中的广泛应用,甚至可以这样认为,正是因为其结果具有不可解释性,反而更有可能促使我们发现新的没有认识到的规律和关系


  • 层数
  • 每层中输入变量的数量
  • 联系的种类
  • 联系的程度
  • 转换函数,又称激活函数或挤压函数

回归

回归(Regression)分析包括线性回归(Linear Regression),这里主要是指多元线性回归和逻辑斯蒂回归(Logistic Regression)。

其中,在数据化运营中更多使用的是逻辑斯蒂回归,它又包括响应预测、分类划分等内容,简单来讲,凡是预测“两选一”事件的可能性(比如,“响应”还是“不响应”;“买”还是“不买”;“流失”还是“不流失”),都可以采用逻辑斯蒂回归方程。


关联规则

关联规则(Association Rule)是在数据库和数据挖掘领域中被发明并被广泛研究的一种重要模型,关联规则数据挖掘的主要目的是找出数据集中的频繁模式(Frequent Pattern),即多次重复出现的模式和并发关系(Cooccurrence Relationships),即同时出现的关系,频繁和并发关系也称作关联(Association)。

应用关联规则最经典的案例就是购物篮分析(Basket Analysis),通过分析顾客购物篮中商品之间的关联,可以挖掘顾客的购物习惯,从而帮助零售商更好地制定有针对性的营销策略。


支持度

规则X→Y的支持度:是指事物全集中包含X∪Y的事物百分比。

支持度主要衡量规则的有用性,如果支持度太小,则说明相应规则只是偶发事件

置信度

X→Y的置信度:是指既包含了X又包含了Y的事物数量占所有包含了X的事物数量的百分比。

置信度主要衡量规则的确定性(可预测性),如果置信度太低,那么从X就很难可靠地推断出Y来



聚类

聚类(Clustering)分析有一个通俗的解释和比喻,那就是“物以类聚,人以群分”。针对几个特定的业务指标,可以将观察对象的群体按照相似性和相异性进行不同群组的划分。经过划分后,每个群组内部各对象间的相似度会很高,而在不同群组之间的对象彼此间将具有很高的相异度。


聚类技术在数据分析和数据化运营中的主要用途表现在:既可以直接作为模型对观察对象进行群体划分,为业务方的精细化运营提供具体的细分依据和相应的运营方案建议,又可在数据处理阶段用作数据探索的工具,包括发现离群点、孤立点,数据降维的手段和方法,通过聚类发现数据间的深层次的关系等


贝叶斯分类方法

贝叶斯分类方法(Bayesian Classifier)是非常成熟的统计学分类方法,它主要用来预测类成员间关系的可能性。比如通过一个给定观察值的相关属性来判断其属于一个特定类别的概率。贝叶斯分类方法是基于贝叶斯定理的


支持向量机

作为一种新的分类方法,支持向量机以结构风险最小为原则。在线性的情况下,就在原空间寻找两类样本的最优分类超平面。在非线性的情况下,它使用一种非线性的映射,将原训练集数据映射到较高的维上。在新的维上,它搜索线性最佳分离超平面。使用一个适当的对足够高维的非线性映射,两类数据总可以被超平面分开。


主成分分析

主成分分析会通过线性组合将多个原始变量合并成若干个主成分,这样每个主成分都变成了原始变量的线性组合。这种转变的目的,一方面是可以大幅降低原始数据的维度,同时也在此过程中发现原始数据属性之间的关系。



主成分分析的主要步骤如下:

  • 通常要先进行各变量的标准化工作,标准化的目的是将数据按照比例进行缩放,使之落入一个小的区间范围之内,从而让不同的变量经过标准化处理后可以有平等的分析和比较基础。
  • 选择协方差阵或者相关阵计算特征根及对应的特征向量。
  • 计算方差贡献率,并根据方差贡献率的阀值选取合适的主成分个数。
  • 根据主成分载荷的大小对选择的主成分进行命名。
  • 根据主成分载荷计算各个主成分的得分。

假设检验

假设检验的基本原理就是小概率事件原理,即观测小概率事件在假设成立的情况下是否发生。如果在一次试验中,小概率事件发生了,那么说明假设在一定的显著性水平下不可靠或者不成立;如果在一次试验中,小概率事件没有发生,那么也只能说明没有足够理由相信假设是错误的,但是也并不能说明假设是正确的,因为无法收集到所有的证据来证明假设是正确的。



互联网行业数据挖掘应用的特点
  • 数据的海量性
  • 数据分析(挖掘)的周期短
  • 数据分析(挖掘)成果的时效性明显变短
  • 互联网行业新技术、新应用、新模式的更新换代相比于传统行业而言更加迅速、周期更短、更加具有颠覆性,相应地对数据分析挖掘的应用需求也更为苛刻,且要多样化


本章简单回顾一下数据挖掘作为一门学科的发展历史,并具体探讨统计分析与数据挖掘的主要区别,介绍了在数据化运营中常用的统计分析和数据挖掘的算法

还以为这里能得到“数据挖掘“和“数据分析”的区别,本书好像是将两个概念不加区分的。





0 个回复

您需要登录后才可以回帖 登录 | 加入黑马