汉诺(Hanoi)塔问题:古代有一个梵塔,塔内有三个座A、B、C,A座上有64个盘子,盘子大小不等,大的在下,小的在上(如图)。有一个和尚想把这64个盘子从A座移到B座,但每次只能允许移动一个盘子,并且在移动过程中,3个座上的盘子始终保持大盘在下,小盘在上。在移动过程中可以利用B座,要求打印移动的步骤。 汉诺塔问题
提示
这个问题在盘子比较多的情况下,很难直接写出移动步骤。我们可以先分析盘子比较少的情况。假定盘子从大向小依次为:盘子1,盘子2,...,盘子64。
如果只有一个盘子,则不需要利用B座,直接将盘子从A移动到C。 如果有2个盘子,可以先将盘子1上的盘子2移动到B;将盘子1移动到c;将盘子2移动到c。这说明了:可以借助B将2个盘子从A移动到C,当然,也可以借助C将2个盘子从A移动到B。 如果有3个盘子,那么根据2个盘子的结论,可以借助c将盘子1上的两个盘子从A移动到B;将盘子1从A移动到C,A变成空座;借助A座,将B上的两个盘子移动到C。这说明:可以借助一个空座,将3个盘子从一个座移动到另一个。 如果有4个盘子,那么首先借助空座C,将盘子1上的三个盘子从A移动到B;将盘子1移动到C,A变成空座;借助空座A,将B座上的三个盘子移动到C。 上述的思路可以一直扩展到64个盘子的情况:可以借助空座C将盘子1上的63个盘子从A移动到B;将盘子1移动到C,A变成空座;借助空座A,将B座上的63个盘子移动到C。 |